WALKMECH

ENERGY-EFFICIENT TRANSFEMORAL PROSTHESIS

R. Unal, R. Carloni, S.M. Behrens, E.E.G. Hekman,
S. Stramigioli and H.F.J.M. Koopman

${ }^{1}$ BioMechanical Engineering Laboratory
${ }^{2}$ Control Engineering Laboratory

OUTLINE

- The Problem
- The Classification
- Proposed Concept
- Working Principle
- The Realization
- TESTS
- Results
- Conclusions

UNIVERSITEIT TWENTE.

The Problem

transfemoral prosthesis

Amputation level	Energy above healthy subject [\%]	Speed [m/min]
Long transtibial	10	70
Average transtibial	25	60
Short transtibial	40	50
Bilateral transtibial	41	50
Transfemoral	$\underline{65}$	40
Wheelchair	$0-8$	70

Total Knee 2100 - Ossur

THE CLASSIFICATION

transfemoral prosthesis - passive

$3 R 95$ - Otto Bock

$3 R 80$ - Otto Bock

The Classification

 transfemoral prosthesis

C-Leg \& C-Leg compact - Otto Bock

Rheo Knee - Ossur

Smart Adaptive - Endolite

The Classification
 transfemoral prosthesis

Power Knee - Ossur

UNIVERSITEIT TWENTE

The Classification

transfemoral prosthesis

Passive	MP Controlled	Powered
- No speed adaptation	+ Adaptive walking	+ Adaptive walking
- No push off	- No push off	+ Push off support
- High metabolic cost	- High metabolic cost	+ Reduced metabolic cost
+ No battery	Requires batteries	- Big batteries
+ Low price	Medium price	- High price

PROPOSED CONCEPT

in theory walking is almost energy free...

$$
\mathrm{A}_{1}+\mathrm{A}_{2}
$$

$\sim 0.20 \mathrm{~J} / \mathrm{kg}$

A_{3}
$\sim 0.13 \mathrm{~J} / \mathrm{kg}$
G
$\sim 0.35 \mathrm{~J} / \mathrm{kg}$

PROPOSED CONCEPT

in theory walking is almost energy free...

to design an actuation system;

- that is able to store (power absorption) and release the energy
(power generation)
- that provides energy exchange between the knee and ankle joints.

The actuation system is to be controlled without dissipation (brakes) and will make use of every joule of energy during walking cycle (energy efficient).

WORKING PRINCIPLE

bi-directional element

After pre-swing phase, the attachment point of the spring is changed from the heel $\left(P_{1}\right)$ to the upper part of the foot $\left(P_{2}\right)$ (left).
At the end of the swing, the spring is loaded and its position changes back to the P_{1} (right).

WORKING PRINCIPLE

ankle elastic element

At the beginning of the stance phase, both elements C_{2} and C_{3} are ready for the storage of absorption A_{3} (left).
At the end of the stance phase, both springs are loaded (right).

SIMULATIONS

power flow for each joint

64\% overall system efficiency

GGW

The Realization

Energy is stored, exchanged and released

Gtw

TESTS

TESTS

RESULTS

joint angles

RESULTS

joint power

Almost all of A_{2} portion is stored
50% of push-off is provided

PROPOSED CONCEPT - II

in theory walking is almost energy free...

$$
\mathrm{A}_{1}+\mathrm{A}_{2}
$$

$\sim 0.20 \mathrm{~J} / \mathrm{kg}$

A_{3}
$\sim 0.13 \mathrm{~J} / \mathrm{kg}$
G
$\sim 0.35 \mathrm{~J} / \mathrm{kg}$

WORKING PRINCIPLE

linkage element

WORKING PRINCIPLE

 progressive element

SIMULATIONS

power flow for each joint

76% overall system efficiency

The Realization

Energy is stored, exchanged and released

TESTS

healthy subjects

UNIVERSITEIT TWENTE.

TESTS

ReSULTS

joint angles

Gaw
UNIVERSITEIT TWENTE. ${ }_{25}$

RESULTS

ground reaction forces

symmetric ground reaction force behavior

RESULTS

joint power

Significant ankle push-off generation

