WALKMECH

ENERGY-EFFICIENT TRANSFEMORAL PROSTHESIS

R. Unal, R. Carloni, S.M. Behrens, E.E.G. Hekman, S. Stramigioli and H.F.J.M. Koopman

¹BioMechanical Engineering Laboratory ²Control Engineering Laboratory

OUTLINE

- THE PROBLEM
- THE CLASSIFICATION
- PROPOSED CONCEPT
- WORKING PRINCIPLE
- THE REALIZATION
- TESTS
- RESULTS
- CONCLUSIONS

THE PROBLEM

transfemoral prosthesis

Amputation level	Energy above healthy subject [%]	Speed [m/min]
Long transtibial	10	70
Average transtibial	25	60
Short transtibial	40	50
Bilateral transtibial	41	50
Transfemoral	<u>65</u>	40
Wheelchair	0-8	70

MAUCH GM - Ossur

Total Knee 2100 - Ossur

THE CLASSIFICATION

transfemoral prosthesis - passive

3R80 – Otto Bock

THE CLASSIFICATION

transfemoral prosthesis

C-Leg & C-Leg compact – Otto Bock

Smart Adaptive - Endolite

THE CLASSIFICATION

transfemoral prosthesis

Power Knee - Ossur

THE CLASSIFICATION

transfemoral prosthesis

Passive	MP Controlled	Powered
- No speed adaptation	+ Adaptive walking	+ Adaptive walking
– No push off	– No push off	+ Push off support
– High metabolic cost	- High metabolic cost	+ Reduced metabolic cost
+ No battery	Requires batteries	– Big batteries
+ Low price	Medium price	– High price

PROPOSED CONCEPT

UNIVERSITEIT TWENTE.

8

in theory walking is almost energy free...

PROPOSED CONCEPT

in theory walking is almost energy free...

to design an actuation system;

 that is able to store (power absorption) and release the energy (power generation)

that provides energy exchange between the knee and ankle joints.

The actuation system is to be controlled without dissipation (brakes) and will make use of every joule of energy during walking cycle (energy efficient).

WORKING PRINCIPLE

bi-directional element

After pre-swing phase, the attachment point of the spring is changed from the heel (P_1) to the upper part of the foot (P_2) (left).

At the end of the swing, the spring is loaded and its position changes back to the P_1 (right).

UNIVERSITEIT TWENTE.

10

WORKING PRINCIPLE

ankle elastic element

At the beginning of the stance phase, both elements C_2 and C_3 are ready for the storage of absorption A_3 (left). At the end of the stance phase, both springs are loaded (right).

SIMULATIONS

power flow for each joint

64% overall system efficiency

THE REALIZATION

Energy is stored, exchanged and released

TESTS

set-up

TESTS

PROPOSED CONCEPT – II

UNIVERSITEIT TWENTE.

18

in theory walking is almost energy free...

WORKING PRINCIPLE

linkage element

WORKING PRINCIPLE

progressive element

SIMULATIONS

power flow for each joint

THE REALIZATION

.....

Energy is stored, exchanged and released

TESTS

healthy subjects

TESTS

amputee subjects

RESULTS

UNIVERSITEIT TWENTE.

ground reaction forces

symmetric ground reaction force behavior

RESULTS joint power

UNIVERSITEIT TWENTE.

Significant ankle push-off generation

